Tetrahedron Letters No. 17, pp 1681 - 1684, 1972. Pergamon Fress. Printed in Great Britain.

THE CHEMISTRY OF SMALL RING COMPOUNDS. PART 181

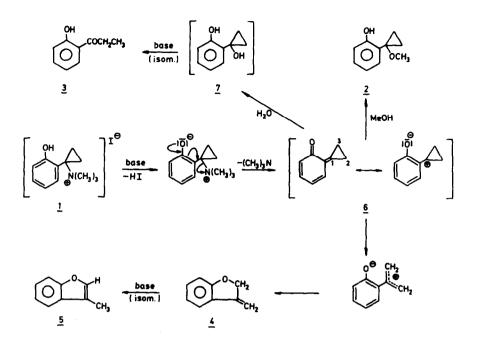
INDIRECT EVIDENCE FOR 2-CYCLOPROPYLIDENECYCLOHEXADIENONE AS AN INTERMEDIATE*

by

W.J.M. van Tilborg^{**}, J.R. van der Vecht, H. Steinberg and Th.J. de Boer^{***} Laboratory of Organic Chemistry, University of Amsterdam Nieuwe Achtergracht 129, Amsterdam, The Netherlands (Received in UK 6 March 1972; accepted for publication 17 March 1972)

As part of our interest in cyclopropyl compounds with an exocyclic double bond, we have investigated the quaternary ammonium salt <u>1</u>, 1-(o-hydroxyphenyl)cyclopropyltrimethylammoniumiodide² under alkaline conditions, normally favouring Hofmann elimination.

Heating of <u>1</u> with 3.5 eq. of KOH for 36 hrs in refluxing methanol led to substitution of the trimethylamino group by a methoxy group, and isolation of 1-(o-hydroxyphenyl)1-methoxycyclopropane <u>2</u> in 73% yield. The IR spectrum of <u>2</u> shows bands at 3400 cm⁻¹ (OH), 2940, 2900 and 2820 cm⁻¹ (OCH₃), 1025 cm⁻¹ (cyclopropyl). The NMR spectrum displays a multiplet with an AA'BB' pattern at


 ^{*} Part of the thesis of W.J.M. van Tilborg, University of Amsterdam, 1971.
** Present address: Koninklijke/Shell-Laboratorium, Badhuisweg 3, Amsterdam.
*** From whom reprints may be obtained.

 $\delta = 0.95$ (4H, cyclopropyl), a singlet at $\delta = 3.07$ (3H, methoxy) and a multiplet at $\delta = 6.5-7.3$ (4H, phenyl). The mass spectrum gives the parent peak at m/e 164.

By heating of <u>1</u> for 1 hr at 140° with 1.5 eq. of the sterically hindered N,N-diisopropylethylamine (not water-free) the only product that could be isolated in 38% yield (VPC) was o-hydroxypropiophenone <u>3</u>. The IR spectrum of <u>3</u> shows bands at 1640 cm⁻¹ (C=0 conj.), 1605, 1490 cm⁻¹ (phenyl), 750 cm⁻¹ (4 adj. H-atoms). The NMR spectrum (CDCl₃) shows a triplet at $\delta = 1.26$ and a quartet at $\delta = 3.04$ (resp. 3H and 2H, $CH_3CH_2C=0$), a mutiplet at $\delta = 6.7-7.9$ (4H, phenyl) and a broadened singlet at $\delta = 12.3$ (1H, OH). The molecular weight, determined by mass spectrometry, amounts to 150.06855. Calc. for $C_9H_{10}O_2$: 150.06801.

Under similar conditions, the same amine (dried over molecular sieves), reacts with the iodide <u>1</u> (dried over P_2O_5) to give besides <u>3</u> (from residual H_2O) the new products 3-methylene-2,3-dihydrobenzo(b)furan <u>4</u> and 3-methylbenzo(b)furan <u>5</u> in a total yield of at least 12%. The IR spectrum (CHCl₃) of <u>4</u> shows a band at 1640 cm⁻¹ (C=C). The mass spectrum has a parent peak at m/e 132. The 100 MHz NMR spectrum shows three distorted triplets at $\delta = 4.95$ (1H), $\delta = 5.07$ (2H) and $\delta = 5.38$ (1H), and a multiplet at $\delta = 6.7-7.5$ (4H, phenyl). The simulated spectrum of the ABC₂ part ($\delta_A = 5.397$; $\delta_B = 4.974$; $\delta_C = 5.088$; $J_{AB} = 0.50$; $J_{AC} = 3.20$; $J_{BC} = 2.85$) is identical with the observed pattern. The IR spectrum of <u>5</u> is identical with that of an authentic sample³. The UV spectrum of <u>5</u> is almost identical with that of benzo(b)furan⁴. Compound <u>4</u> can readily be converted into its more stable isomer <u>5</u> with trifluoroacetic acid in chloroform at room temperature. This reaction is, however, very slow in refluxing N,N-diisopropylethylamine.

The experimental results can be explained by postulating 2-cyclopropylidenecyclohexadienone $\underline{6}$ as a key intermediate in all reactions. It is formed in analogy with 2-methylenecyclohexadienone from 2-hydroxybenzyltrimethylammonium iodide⁵.

The substitution products $\underline{2}$ and $\underline{7}$ originate presumably from $\underline{6}$ by nucleophilic addition of methanol and water respectively. Under the alkaline conditions the cyclopropanol $\underline{7}$ isomerizes rapidly to the ring-opened ketone $\underline{3}$ by C_1-C_2 bond fission. The isomers $\underline{4}$ and $\underline{5}$ are supposed to be formed by a Woodward-Hoffmann-DePuy ring cleavage of $\underline{6}$ with C_2-C_3 bond rupture. This leaves a kind of zwitter ion (with the features of a phenolate anion and an allyl cation), which collapses to compound $\underline{4}$. Its exocyclic double bond migrates slowly into the ring under the influence of base.

Acknowledgement

The authors are indebted to Mr. A.D. van Rooyen and Mr. R.G. Riet for their technical assistence.

References

- 1. Part 17: W.J.M. van Tilborg, G. Dooyewaard, H. Steinberg and Th.J. de Boer, <u>Tetrahedron Letters</u>, submitted for publication.
- 2. W.J.M. van Tilborg, Thesis, Amsterdam 1971, p. 70, 71.
- 3. Sadtler Standard Spectrum no. 3741, Heyden and Son Ltd., London.
- 4. D.H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, McGraw-Hill, New York 1966, p. 34.
- P.D. Gardner, H. Sarrafizadeh R., and L. Rand, <u>J. Am. Chem. Soc</u>. <u>81</u>, 334 (1959). See also P.D. Gardner, H. Sarrafizadeh R., and R.L. Brandon, <u>ibid</u>. 81, 5515 (1959).